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FACTORS OF GENERALIZED FERMAT NUMBERS 

ANDERS BJORN AND HANS RIESEL 

ABSTRACT. A search for prime factors of the generalized Fermat numbers 
F?, (a, b) = a2n + b2" has been carried out for all pairs (a, b) with a, b < 12 
and GCD(a, b) = 1. The search limit k on the factors, which all have the form 
p = k * 2m + 1, was k = 109 for m < 100 and k = 3 106 for 101 < m < 1000. 
Many larger primes of this form have also been tried as factors of Fn (a, b). 
Several thousand new factors were found, which are given in our tables. For 
the smaller of the numbers, i.e. for n < 15, or, if a, b < 8, for n < 16, the 
cofactors, after removal of the factors found, were subjected to primality tests, 
and if composite with n < 11, searched for larger factors by using the ECM, 
and in some cases the MPQS, PPMPQS, or SNFS. As a result all numbers 
with n < 7 are now completely factored. 

1. GENERALIZED FERMAT NUMBERS 

Generalized Fermat numbers (GFNs) of the form Fn(a) = a2 + 1 have been 
studied earlier by one of us, see [3], [4]. The access to fast computers has recently 
rekindled interest in these numbers [1]. Many of the properties of this particular 
type of numbers also hold for the slightly more general type Fn (a, b) = a2 + b2n 

For obvious reasons we shall assume that a and b are lacking common divisors. 

2. PROPERTIES OF THE FACTORS OF GFNs 

The well-known theorem on the prime factors of the ordinary Fermat numbers 
22n + 1 is in the more general case replaced by the following result. 

Theorem 2.1. Suppose that p - k . 2m + IIFn(a,b), with k odd, and that u 
a/b mod p is a 2t-power residue but not a 2t+l-power residue modp. Then m 
n + t + 1. -If u is not even a quadratic residue, we have to put t = 0. 

Proof. We know that a272 + b2 b2n (a20 + 1) 0 mod p. Since u _x for some x, 
-1 _21- (x2t)2 = mod p. Suppose that x mod p belongs to the exponent 
d = (p - 1)/i = k . 2m/l. Then xd/2 _-1 mod p, and d/2 is also the smallest 
positive exponent, yielding -1. Therefore d = 2n+t+l, 1 = k 2m/d = k 2m-n-t-1, 

and m > n + t + 1. Since we have presumed that u is a 2t-power residue, but not 
a 2t+?-power residue, x is a quadratic non-residue, and thus X(p-1)12 _-1 mod p. 
Thus, (p- 1)/2 must be an odd multiple of d/2 and thus 1 = (p- 1)/d is odd, which 
implies that m-n-t-1 = 0. Thus m is in this case exactly n + t + 1. EZ 
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3. ALTERNATIVE FORMULATION 

Since a/b is a quadratic residue at the same time as ab is, and a biquadratic 
residue if and only if ab3 is, etc., the above criterion can be replaced by the following 
set of conditions: 

If ab is a quadratic residue modp, then m > n + 2, 
if ab3 is a biquadratic residue mod p, then m > n + 3, 
if ab7 is an octic residue modp, then m > n + 4, 
and so on. 

4. APPLICATION OF THE THEOREM 

In some simple cases a/b is always at least a quadratic residue modp for all 
possible prime factors of Fn(a, b), which implies that m > n + 2. Such cases are 
given by the ordinary Fermat numbers, a fact which has long been known, and 
e.g. the cases (a, b) = (9, 2) and (9, 8), since 2 and thus also 18 and 72 are quadratic 
residues of all primes =1 mod 8. The theorem also explains, in a natural way, the 
statistics which have been gathered, by us and by other authors, on the frequency 
of the values of m - n. Since there are half as many 2t?+-power residues modp 
as there are 2t-power residues, the theorem explains the observed falling off by a 
factor 2 when m - n is augmented by 1. 

5. THE NUMBER OF PRIMES k 2m + 1 IN A RECTANGULAR DOMAIN 

When searching for primes it may be interesting to know approximately how 
many primes you can expect to find. Now, every prime p has the form k . 2m + 1 
for some m and some odd number k, both uniquely determined. For m = 1 we 
find the primes p = (2a + 1) * 21 + 1 = 4a + 3, for m = 2 we have the primes 
p = (2a + 1) . 22 + 1 = 8a + 5, and so on. To obtain the number of primes G for 
k < K and [t < m < M we have to count the number of primes in each of a number 
of arithmetic series: 

G(K)= 7w2A+1,2A+I(K. 2" + 1) + 7T2,u+2,2+1?+l (K 2,v+1 + 1) 

+ * * * + 7F2m+1 2?l2(K * 2M + 1) 

7r(2mK) 

m=,u 

according to Dirichlet's theorem. This can be further approximated by the prime 
number theorem, which we here use in the form 7r(x) x/(logx - 1) in order to 
achieve a slightly better approximation for moderate values of x: 

M K M K 
G(K) E log(2mK) -1 _E mlog2 + logK -1 

M+1/2 

I_ x log2+logK-1 - 2[log(x log 2 + log K-1)]2/2 
. 1 ,- 

l 
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6. STATISTICS GATHERED ON PRIME FACTORS OF GFNs 

According to the divisibility theory of GFNs, presented in [1], which is immedi- 
ately applicable also to our case F,(a, b), with b :4 1, a prime factor p = k . 2' + 1, 
with k odd, divides some Fn for the proportion 1/k of all combinations of a and b. 
Thus the total number of factors with [u < m < M and s < k < K (k odd), for the 
GFNs, generated by some fixed combination of a and b, is expected to be (k is odd 
in the summations below) 

M K 2 K M lK M/+112 2d 
Z Zklog2m K 1 2 fl 2 dx 

_ 
k= k log 2mk _ E k m log 2 + log k kSK k x log 2 + log k 

= 1 2 k log(( l2)log2 +logk (with k - 2k' + 1) 

2 (K1)/ 1 l (M + -) log 2 + log(2k' + 1) 

log2 (-1)/2 2k+ (M -2 ) log2+log(2k' + 1) 

K/2 
f / log (it )log2+log(2t+1) dt (withu 2t+1) log2 2k (,ut - 2 log 2 + log(2kt + 1) 2 

k1=2-1)/ 

K?12 

21 (M+ ')log2+logu du 
log2 log (,- logg2 +log2t u 

K/-12 

- [iuloK)1 g +M + 1) log2 + logu () 

- (p - 2) log((- 2)log 2 + log u) 

The summation formula used here is a two-dimensional version of a certain vari- 
ation of the Euler-MacLaurin sum formula, shown in G(K) above. See [21, [61. 

The authors have gathered statistics on all factors in the searched domain, for 
m > 11 and k < lOs, s =3,4,... ,9 up torn 1000. Here we give the average 
values of the number of factors found for each combination (a, b) compared with 
the estimated values from the formula given above 

11<_m <100 k <103 <i104 <i105 < 106 <i107 < 108 <i109 
Minimum 13 15 20 24 26 30 32 
Maximum 30 34 41 48 53 55 58 
Average 19.39 24.93 29.85 34.56 39.10 43.29 47.10 
Formula 19.29 24.69 29.72 34.43 38.87 43.07 47.06 

101 <m <1000 k <103 <i104 <i105 < 106 
Minimum 9 11 17 21 
Maximum 33 40 51 64 
Average 20.29 26.83 32.98 40.76 
Formula 22.47 29.78 37.01 44.14 

As can be seen from the above comparison, our formula "overshoots" the counted 
number of factors? for the larger values of m. This is probably due to some effect of 



444 ANDERS BJORN AND HANS RIESEL 

counting only a small number of primes at the beginning of each of the arithmetic 
series involved, which might invaluate Dirichlet's theorem as a good approximation 
to the actual number of primes in a rectangular domain. 

7. How THE FACTOR TABLES ARE ORGANIZED 

For each pair (a,b), with 1 < b < a < 12, and GCD(a,b) = 1, except for the 
pairs (2,1), (4,1), and (9,4), all known prime factors of the GFNs are given for 
4 < n < 999. Also, many of the larger known primes of the form k * 2m + 1 
have been tried and recorded as factors. The pairs (4,1) and (9,4) are excluded 
because the numbers are the same as for (2,1) and (3, 2), respectively, for the next 
value of n. For the pair (8,1) the factors in the tables refer instead to the number 
(82n +1)/(22 + 1) = 42 _22" + 1. In Table 1, all factors of the formp = k * 2m + 1 
in the following range are given explicitly, by writing each factor in this very form: 

1 < m < 100, k < 109 
100 < m < 1000, k < 3 106 

1000 < m < 3000, k < 21000 
3000 < m < 5000, k < 10000 
5000 < m < 10000, k < 1200 

10000 < m < 12000, k < 220 
12000 < m < 20000, k < 120 
20000 < m < 50000, k < 64 
50000 < m < 100000, k < 32 

Larger factors of Fn(a,b), for n < 12, which however have not been systemati- 
cally searched for, are indicated by their number of digits as Pxx, or as PRPxx, 
if their primality has not yet been proved. For xx up to 100, these factors can 
be looked up in the supplementary tables, Table 2. The last prime factor in each 
decomposition has been marked with an asterisk (*) to indicate that the corre- 
sponding number Fn (a, b) has been completely factored. Only three of the PRPs, 
all with more than 1000 digits, have not yet been proven primes. All numbers 
with n < 7 have been completely factored, and all cofactors with less than 60,000 
digits have been subjected to strong primality tests. Tables are included in the 
microfiche supplement at the back of this issue. 

8. A TIME SAVING DEVICE 

As we have remarked already in our preliminary report [5] on this project, we 
computed only the values of a2n mod p for the 9 values a = 4 to a = 12, and 
combined these residues to find the residues mod p for the interesting 41 pairs under 
study. For m > 1000 we further saved computing time by avoiding to perform 
divisibility tests for n < m - 50. Thanks to this we could restrict ourselves to 
compute the residues for only the five values of a = 4, 5, 7, 9, and 11 (the five primes 
< 12 would also have worked), i.e. we calculated a2t2 50 mod p for these values of 
a. We could then find the corresponding residues for a = 6, 8, 10, and 12 by using 
only 4 multiple precision multiplications. For the last 50 steps we proceeded as 
previously described, working with all 9 residues. To ascertain that not some factor 
p with n < m - 50 escaped our notice, we checked that a2m 

- 5 
b250 mod p. 

The largest difference found for any m - n was 14, which occurred for the factor 
35 247 + I1 ofF33(7,5). 
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9. LARGEST FACTOR FOUND WITH ECM 

In searching for factors farger than our search limits, we employed a version of 
ECM, graciously put at our disposal by Richard Brent. The largest factor found 
was the factor P33 of the cofactor C135 of F8(5, 3), after a couple of smaller factors 
had been removed. Some of the larger cofactors, which did not yield to attacks 
with ECM, were factored by MPQS, PPMPQS, or SNFS. The largest of these were 
cofactors of 11128 + 4128 and 12128 + 5128, both C131. 

10. SEARCH FOR MULTIPLE FACTORS 

All prime factors found with less than 4000 decimal digits have been tested as 
possible square factors. No large square factor was found. Only the following small 
multiple factors were found: The obvious 52 in 42 + 32 and in 72 + 1, 53 in 112 + 22, 
132 in 122 + 5 2, and, finally, the less obvious 172 in 98 + 78 and in 118 + 48. 

The occurrence of multiple factors is governed by the following line of reasoning: 
Any prime p = k * 2m + I divides one GFN for roughly 1/k of all combinations of a 
and b. Using the theory of congruences, it is easy to deduce that p2 divides one GFN 
for roughly l/kp, and p3 divides one GFN for roughly l/kp2, etc. of all pairs (a, b). 
Starting with a factor p of some F,, (a, b) it is easy to construct a new pair (a, b) 
with some GFN divisible by p2, from this one another pair with some GFN divisible 
by p3, etc. Here is an example: Starting from 6411532 + 432, we first solve the linear 
congruence 432 +(5+641x)32 _ 0 mod 6412, or (432 +532)/641 =-32 531x mod 641, 
yielding x -137 and thus 6412 1432 + (5 - 137. 641)32 = 432 + 8781232. Next, 
we solve 432 + (87812 + 6412y)32 _ 0 mod 6413, or (432 + 8781232)/6412 -32 
8781231y mod 641, with y _-85, and so 64131432 + (87812 - 85 6412)32 - 432 + 

3483707332, and so on. A handier example, starting from 64121 17764 +464, found by 
search for small solutions to 6412 x64A+y64, successively gives 641316861730464 +4 64, 

641416354192506564 + 464,... 

The number of square prime factors expected in the region investigated is ac- 
tually quite small. An estimation of the number of factors p2, dividing a given 
combination of a and b for all m > 5 and k > 1, would be: 

1 01 1 

(2m + 1) log 2mk x, 2m (m log 2 + logk) 

00 1 oo l ~~2 oo l2 

<~kzwmlg Zm lg - 6 0.016 =0.026. Ek 12 E 2 mml log 2 6E 2m'rm log 2 6 

This may explain, why no "large" squared prime factors have been found in any 
ordinary or generalized Fermat number so far. 
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